PLTW Gateway

PLTW Gateway Formula Sheet 2016 (v5.0)

Statistics	Constants
$\frac{\textit{Mean}}{\mu = \frac{\sum x_i}{N}} \qquad \overline{x} = \frac{\sum x_i}{n}$	$g = 9.8 \text{ m/s}^2 = 32.27 \text{ ft/s}^2$ $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg}\cdot\text{s}^2$ $\pi = 3.14159$
$\begin{array}{l} \mu = \text{population mean} \\ \overline{x} = \text{sample mean} \\ \Sigma x_i = \text{sum of all data values } (x_1, x_2, x_3, \ldots) \\ N = \text{size of population} \\ n = \text{size of sample} \end{array}$	Mode Place data in ascending order. Mode = most frequently occurring value If two values occur with maximum frequency the data opt is himsele!
Median	If three or more values occur with maximum
Place data in ascending order. If N is odd, median = central value If N is even, median = mean of two central values N = size of population	Range (1.5) Range = $x_{max} - x_{min}$ x_{max} = maximum data value x_{max} = maximum data value

SI Prefixes

Numbers Less Than One			
Power of 10	Prefix	Abbreviation	
10 ⁻¹	deci-	d	
10-2	centi-	С	
10 ⁻³	milli-	m	
10 ⁻⁶	micro-	μ	
10 ⁻⁹	nano-	n	
10 ⁻¹²	pico-	р	
10 ⁻¹⁵	femto-	f	
10 ⁻¹⁸	atto-	а	
10 ⁻²¹	zepto-	z	
10 ⁻²⁴	yocto-	у	

Heat Loss/Gain

Heat Loss/Gain	Q = thermal energy
Q′ = AU∆T	A = area of thermal conductivity
$U = \frac{1}{R}$	U = coefficient of heat conductivity (U-factor) ΔT = change in temperature R = resistance to heat flow (R-

Numbers Greater Than One			
Power of 10	Prefix	Abbreviation	
10 ¹	deca-	da	
10 ²	hecto-	h	
10 ³	kilo-	k	
10 ⁶	Mega-	М	
10 ⁹	Giga-	G	
10 ¹²	Tera-	Т	
10 ¹⁵	Peta-	Р	
10 ¹⁸	Exa-	E	
10 ²¹	Zetta-	Z	
10 ²⁴	Yotta-	Y	

Glaister Equation

<u>98.4 – measured rectal</u>	
temperature =	
1.5	

approximate hours since death

Conversions

Mass/Weight 1 kg = 2.205 lb _m 1 slug = 32.2 lb _m 1 ton = 2000 lb 1 lb = 16 oz	Area 1 acre = = =	= 4047 m² = 43,560 ft² = 0.00156 mi²	Force 1 N = 0.225 lb 1 kip = 1,000 lb		Energy 1 J = 0.239 cal = 9.48 x 10 ⁻⁴ Btu = 0.7376 ft·lb _f
Length 1 m = 3.28 ft 1 km = 0.621 mi 1 in. = 2.54 cm 1 mi = 5280 ft 1 yd = 3 ft Time 1 d = 24 h 1 h = 60 min 1 min = 60 s 1 yr = 365 d	Volume 1L = 1mL = 1mL = Temperate 1 K = See below temperate	= 0.264 gal = 0.0353 ft ³ = 33.8 fl oz = 1 cm ³ = 1 cc ature <u>Unit</u> ents = 1 °C = 1.8 °F = 1.8 °R w for ure calculation	Pressure 1 atm = 1.01325 ba = 33.9 ft H_2C = 29.92 in. H = 760 mm H = 101,325 Pa = 14.7 psi 1 psi = 2.31 ft of H Version 1000000000000000000000000000000000000	ar) lg g a l ₂ O n n p n n p s/s ec	I J = 1 N·m 1 J = 1 N·m 1 N = 1 kg·m / s ² 1 Pa = 1 N / m ² 1 V = 1 W / A 1 W = 1 J / s 1 Q = 1 V / A 1 Hz = 1 s ⁻¹ 1 F = 1 A·s / V 1 H = 1 V·s / V
Equations Electricity Ohm's Law V = IR		$Mass and Wem = VD_mW = mgW = VD_w$	eight	Ener W = F W = v F _{II} = f	gy: Work F _I · d work force parallel to direction of displacement isplacement
P = IV V = voltage I = current R = resistance P = power		V = volume D _m = mass de m = mass D _w = weight d W = weight g = accelerati	ensity lensity on due to gravity	Ener U = n U = p m =m g = a	gy: Potential ngh potential energy nass cceleration due to gravity
		Power $P = \frac{E}{t} = \frac{W}{t}$ $P = \tau \omega$ $P = power$ $E = energy$ $W = work$ $t = time$ $\tau = torque$ $\omega = angular w$	/elocity	$Energy K = \frac{1}{2}$ $K = ki$ $M = n$ $V = Ve$	gy: Kinetic mv ² inetic energy nass elocity gy: Thermal
				$\Delta Q =$ $\Delta Q =$ $m = n$ $c = sp$ $\Delta T = 0$	mc∆T change in thermal energy nass becific heat change in temperature

© 2014 Project Lead The Way, Inc. PLTW Gateway Formula Sheet 2016 – 3

Simple Machines

IMA = total number of strands of a single string supporting the resistance

 $IMA = \frac{D_E \text{ (string pulled)}}{D_R \text{ (resistance lifted)}}$

 $\tau_{in} = torque - driver$ $\tau_{out} = torque - driven$

Aerospace Equations

Bernoulli's Law $\left(P_{s} + \frac{\rho v^{2}}{2}\right)_{1} = \left(P_{s} + \frac{\rho v^{2}}{2}\right)_{2}$ Ps = static pressure v = velocity

 ρ = density

$$\label{eq:constraint} \begin{split} \overline{\textit{Energy}} \\ \mathsf{K} &= \frac{1}{2} \, \text{mv}^2 \\ \mathsf{U} &= \frac{-\,\text{GMm}}{R} \\ \mathsf{E} &= \mathsf{U} + \mathsf{K} = -\frac{\text{GMm}}{2\text{R}} \\ \mathsf{G} &= 6.67 \times 10^{-11} \, \frac{\text{m}^3}{\text{kg} \times s^2} \\ \\ \mathsf{K} &= \text{kinetic energy} \\ \mathsf{m} &= \text{mass} \\ \mathsf{v} &= \text{velocity} \\ \mathsf{U} &= \text{gravitational potential energy} \\ \mathsf{G} &= \text{universal gravitation constant} \\ \mathsf{M} &= \text{mass of central body} \\ \mathsf{m} &= \text{mass of orbiting object} \\ \\ \mathsf{R} &= \text{Distance center main body to} \\ &= \text{center of orbiting object} \\ \\ \mathsf{E} &= \text{Total Energy of an orbit} \end{split}$$

Electronics

Capacitor Code

Code	Tolerance		
А	±0.05%		
В	±0.1%		
С	±0.25%		
D	±0.5%		
F	±1%		
G	±2%		
J	±5%		
к	±10%		
M or NONE	±20%		
Ν	±30%		
q	-10%, +30%		
s	-20%, +50%		
Т	-10%, +50%		
Z	-20%, +80%		